HOMOMORPHISM AND ANTIHOMOMORPHISM OF REVERSE DERIVATIONS ON PRIME RINGS

Dr. C. Jaya Subba Reddy

Abstract

In this paper we show that if a reverse derivation d acts as a homomorphism or an anti-homomorphism on a non-zero right ideal U of a prime ring R, then $d=0$.

Index Terms- Derivation, Reverse derivation, Prime ring, Center.

1 Introduction

Macdonald [2] established some group-theoretic results in terms of inner derivations. Bell and Kappe [3] studied the analogous results for rings in which derivations satisfy certain algebraic conditions. I. N. Herstein [1] has introduced the concept of reverse derivations of prime rings and proved that a non-zero reverse derivation * of a prime ring A is a commutative integral domain and ${ }^{*}$ is an ordinary derivation of A. Bresar, Vukman [4] and Samman, Alyamani [5] have studied some properties of prime (or) semi prime rings with reverse derivations. In this paper we show that if a reverse derivation d acts as a homomorphism or an anti-homomorphism on a non-zero right ideal U of a prime ring R, then $d=0$.

2 PRELIMINARIES

We know that an additive map d from a ring R to R is called a derivation on R if $d(x y)=d(x) y+x d(y)$, for all $x, y \in R$. A ring R is called prime if xay $=0$ implies $x=0$ or $y=0$, for all x, a, y in R. An additive mapping d from a ring R into itself satisfying $d(x y)=d(y) x+y d(x)$, for all $x, y \in R$, is called a reverse derivation on R. Throughout this paper R will denote a prime ring and Z its center.

3 MAIN RESULTS

Theorem 1:

Let R be a prime ring and U a non-zero right ideal of R. If d is a reverse derivation of R which acts as a homomorphism (or) an anti-homomorphism on U, then $d=0$ on R.

Department of Mathematics, S.V.University, Tirupati-
517502,AndhraPradesh,India.
cjsreddysvu@gmail.com

Theorem 2: Let R be a prime ring and U a non-zero right ideal of R. Suppose $d: R \rightarrow R$ is a reverse derivation of R,
(i) If d acts as a homomorphism on U, then $d=0$ on R.
(ii) If d acts as an anti-homomorphism on U, then

$$
d=0 \text { on } R .
$$

Proof: If d acts as a homomorphism on U, then we have,
$d(y) d(x)=d(y x)=d(x) y+x d(y)$, for all $x, y \in U \ldots \ldots$ (1)
we replace $y=y x$ in equ.(1), then, $\Rightarrow d(y x) d(x)=d(x) y x+x d(y x), \quad$ for all $x, y \in U$.
We multiply equ.(1) with $d(x)$ on the right hand side and using d is a homomorphism on U, then we
get, $d(y x) d(x)=d(x) y d(x)+x d(y) d(x)$,
$d(y x) d(x)=d(x) y d(x)+x d(y x)(3)$
By combining equ.'s (2) and (3), we
get, $\Rightarrow d(x) y x=d(x) y d(x)$
$\Rightarrow x=d(x)$
$\Rightarrow(d(x)-x)=0$
$\Rightarrow(d(x)-x) d(x)=0$
$\Rightarrow d\left(x^{2}\right)=x d(x)$
Since d is a reverse derivation, we have, $d(x) x=0$.
By linearizing x by $x+y$, then,
$\Rightarrow d(x) y+d(y) x=0$ for all $x, y \in U$.
We replace y by $y x$ in equ.(5), then,
$\Rightarrow d(x) y x=0$, for all $x, y \in U$. (6)
By substituting x by $S X$ in equ.(6), then we get,
$\Rightarrow d(x) y s x=0$, for all $x, y \in U$. and $s \in R$
Thus for each $x \in U$, the primeness of R forces that either $d(x) y=0$ (or) $x=0$.
But $x=0$ also implies that $d(x) y=0$, for all $x, y \in U$
If we replace y by $r y$ in equ.(7), then we get,
$\Rightarrow d(x) r y=0$, for all
$x, y \in U$ and $r \in R$

$$
\begin{equation*}
\Rightarrow d(x) R y=0 \tag{8}
\end{equation*}
$$

$d(x)=0$, for all $y \in U$.
We replace x by $s X$ in
equ.(8), then we get,

$$
\begin{aligned}
& \Rightarrow d(s x)=0 \\
& \Rightarrow d(x) s+x d(s)=0 \\
& \Rightarrow x d(s)=0, \text { for all } x \in U
\end{aligned}
$$

and $s \in R$ \qquad . (9)
Again replacing x by $x r$ in equ.(9), then we get,
$\Rightarrow \operatorname{xrd}(s)=0$, for all $x \in U$ and $r, s \in R$.
Hence $x R d(s)=\{0\}$,
Since R is prime and U a non-zero right ideal of R, then $d=0$ on R.
(i) If d acts as an anti-homomorphism on U.

By our hypothesis, we have,
$\Rightarrow d(y x)=d(x) d(y)=d(x) y+x d(y)$, for
all $x, y \in U$
By substituting $y x$ for x in equ.(10), then, $\Rightarrow d(y x) d(y)=d(y x) y+y x d(y)$, for all $x, y \in U$ (11)

From equ.(10) implies that
$\Rightarrow x d(y) d(y)=y x d(y)_{(12)}$
We replace x by $r x$ in equ.(12), then

$$
\begin{equation*}
\Rightarrow \operatorname{rxd}(y) d(y)=y r x d(y), \text { for } \tag{all}
\end{equation*}
$$

$x, y \in U$ and $r \in R$ (13)
We multiply equ.(12) with r from the left, then we get,
$\Rightarrow \operatorname{rxd}(y) d(y)=r y x d(y){ }_{(14)}$
By combining equ.s(13) and (14), we get,

$$
\begin{aligned}
& \Rightarrow y r x d(y)=r y x d(y) \\
& \Rightarrow[r y-y r] x d(y)=0
\end{aligned}
$$

$$
\Rightarrow[r, y] x d(y)=0, \text { for } \quad \text { all } \quad x, y \in U \text { and }
$$

$r \in R_{(15)}$
We replace x by sx in equ.(15), then
$\Rightarrow[r, y] \operatorname{sxd}(y)=0$, for all $x, y \in U$ and $s, r \in R$. Hence $[r, y] \operatorname{Rxd}(y)=\{0\}$, for all $x, y \in U$ and $r \in R$.Thus, for
each $y \in U$, the primeness of R forces that either $[r, y]=0$ (or) $x d(y)=0$. Let
$A=\{y \in U / x d(y)=0$, for all $x \in U\}$ and
$B=\{y \in U /[r, y]=0$, for all $r \in R\}$. Then clearly A and B are additive subgroups of U, whose union is U. By Brauer's trick, we have $x d(y)=0$, for all $x, y \in U$ (or) $[r, y]=0$, for all $y \in U$ and $r \in R$. If $[r, y]=0$, we replace y by $s y$, then $[r, s y]=0$ which implies $[r, s] y=0$, for all $y \in U$ and $r, s \in R$. Therefore $[r, s] R y=\{0\}$. The primeness of R forces either $y=0$ (or) $[r, s]=0$, But $U \neq\{0\}$, then we have $[r, s]=0$, for all $r, s \in R$, that is R is commutative. So, $d(x y)=d(y) x+y d(x), \quad$ for all $x, y \in U$ which implies that d is a reverse derivation which acts as an anti-homomorphism on U. Hence by Theorem: 1, we have $d=0$ on R. Thus we have remaining possibility that

$$
x d(y)=0, \text { for all } x, y \in U(16
$$

If we replace x by $x r$ in equ.(16), then we get,
$\Rightarrow \operatorname{xrd}(y)=0$, for all $x, y \in U$ and $r \in R$.Hence $x R d(y)=0$, which implies that,
$\Rightarrow d(y)=0$, for all $y \in U$ (17)
By substituting sy for y in equ.(17), then we obtain,
$\Rightarrow d(s y)=0$
$\Rightarrow d(y) s+y d(s)=0$
$\Rightarrow y d(s)=0$,for
all $y \in U$ and
$s \in R$

We replace y by $y r$ in equ.(18), then
$\Rightarrow y r d(s)=0$, for all $y \in U$ and $r, s \in R$.
Hence $y R d(s)=\{0\}$.
Since R is prime and U a non-zero right ideal of R, then $d=0$ on R

4 REFERENCES

[1] I.N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8(1957), 1104- 1110.
[2] I.D.Macdonald, Some group elements defined by commutators, Math. Scientist, 4(1979), 129-131.
[3] H.E.Bell and L.C. Kappe, Rings in which derivations satis fy certain algebraic conditions, Acta. Math.Hungar. 53(1989), 339-346.
[4] M.Bresar and J.Vukman, On some additive mappings in rings with involution, Aequationes Math. 38(1989), 178185.
[5] M.Samman and N.Alyamani, Derivations and reverse der ivations in semi prime rings, International Mathematical Forum, 2, (2007), No.39, 1895-1902.

